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1. INTRODUCTION

The "rst author recently established a formula for the receptance matrix of viscously
damped discrete systems subject to several constraint equations [1]. The reliability of the
formula derived was tested on an academic example of a spring}mass system with three
degrees of freedom, the co-ordinates of which were assumed to be subject to a constraint
equation. The aim of this note is to put forward the applicability of the method better on
a more complex but practical system.

2. THEORY

The problem can be stated referring to the cantilever beam in Figure 1. The
Bernoulli}Euler beam is assumed to be simply supported at a distance s*"g¸ from
the "xed end. At the distance x"l, a harmonically varying vertical force F(t) is acting on
the beam. It is desired to determine the amplitude distribution of the beam due to this force.
This problem can also be posed to "nd the frequency response function of the beam. In
order to simplify the calculations in the following, damping will be omitted.

2.1. APPLICATION OF THE FORMULA IN REFERENCE [1]

Begin with the system in Figure 1, where it is "rst assumed that the support does not exist.
The equation of the motion of the beam is

EIwIV(x, t)#mwK (x, t)"F (t) d(x!l ), (1)

the exciting force being

F (t)"F
0
eiXt, (2)

where the primes and overdots denote partial derivatives with respect to x and time
t respectively. EI is the bending rigidity and m is the mass per unit length of the beam. d (x)
denotes the Dirac function.
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Figure 1. Cantilevered beam simply supported in-span, subject to a harmonically varying force.
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The corresponding boundary conditions are

w (0, t)"w@ (0, t)"wA(¸, t)"w@@@(¸, t)"0 (3)

An approximate series solution of the di!erential equation (1) can be taken in the form

w (x, t)+
n
+
r/1

w
r
(x) g

r
(t), (4)

where the w
r
(x) are the orthogonal eigenfunctions of the bare clamped-free beam,

normalized with respect to the mass density. After substitution of expression (4) into the
di!erential equation (1), both sides of the equation are multiplied by the sth eigenfunction
w
s
(x) and integrated over the beam length. By using the orthogonality property of the

eigenfunctions, the system of modal equations, i.e., the system of di!erential equations for
g
i
(t), is obtained:

gK
i
(t)#u2

i
g
i
(t)"N

i
(t) (i"1,2, n), (5)

where

u2
i
"(b

i
¸)4

EI

m¸4
, bM

1
"b

1
¸"1)875104068712, bM

2
"b

2
¸"4)694091132974,

N
i
(t)"F(t) w

i
(l). (6)

The system of di!erential equations (5) can be written in matrix notation as

gK (t)#x2g (t)"N (t), (7)
where

g (t)"[g
1
(t) 2 g

n
(t)]T, x2"diag(u2

i
), N(t)"N1 eiXt ,

N1 "F
0

w (l), w (x)"[w
1
(x)2w

n
(x)]T. (8)

u
i
(i"1,2, n) are the eigenfrequencies of the bare cantilever beam.

Substitution of

g (t)"g6 eiXt (9)

into the matrix di!erential equation (7) yields

g6 "H (X) N1 , (10)
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where the receptance matrix is in the form

H(X)"(!X2 I#x2)~1"diag A
1

u2
i
!X2B. (11)

This expression could be written directly from equation (5) as in reference [1].
Now return to the actual system with the support at x"g¸. The introduction of the

support leads to the constraint equation

n
+
r/1

w
r
(s*) g

r
(t)"0, (12)

which can be written compactly as

aT
1
g"0, (13)

where

aT
1
"wT (s*)"[w

1
(s*)2w

n
(s*)]T, s*"g¸. (14)

The amplitude vector g6 in the constrained case can be written from equation (10)
analogously as

g6 "H
cons

(X) N1 , (15)

where from reference [1] the receptance matrix of the constrained system reads as

H
cons

(X)"H(X) CI!
w (s*)wT (s*)H (X)

wT(s*) H(X) w (s*)D (16)

with I being the (n]n) unit matrix.
Therefore, the displacements of the constrained (i.e., supported) beam can be written by

using equation (9) as

w
cons

(x, t)"wN
cons

(x) eiXt, (17)

where

wN
cons

(x)"
n
+
r/1

w
r
(x)gN

r
. (18)

It is easy to show that the above expression can be reformulated as

wN
cons

(x)"(wT(x) H
cons

(X)w(l )) F
0
, (19)

which in turn, after some rearrangements, leads to

wN
cons

(x)"aT (x) diag A
1

bM 4
i
!X*2BCI!

a (s*) aT(s*) diag (1/(bM 4
i
!X*2))

aT (s*) diag (1/(bM 4
i
!X*2)) a (s*)D a(l)

F
0

(EI/¸3)
, (20)

where

X*"
X
x

0

, x2
0
"

EI

m¸4
,

wT (x)"
1

Jm¸

aT (x)"
1

Jm¸

[a
1
(x)2 a

n
(x)],

a
i
(x)"cosh bM

i

x

¸

!cosbM
i

x

¸

!gM *
i Asinh bM

i

x

¸

!sinbM
i

x

¸B,
gN *
i
"

cosh bM
i
#cosbM

i
sinh bM

i
#sin bM

i

. (21)

Expression (20) is the amplitude distribution on the supported beam subject to the
harmonic force, which was looked for.
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In the case F
0
"1, the right-hand side of equation (20) represents nothing else but the

frequency response function of the beam in Figure 1.

2.2. SOLUTION THROUGH A BOUNDARY VALUE PROBLEM FORMULATION

In order to prove the validity of expression (20), the only way is to compare this with the
results of a boundary value problem formulation.

The bending vibrations of the three beam portions shown in Figure 1 are governed by the
partial di!erential equation

EIwIV
i

(x, t)#mwK
i
(x, t)"0 (i"1, 2, 3) (22)

with the following boundary and transition conditions:

w
1
(0, t)"w@

1
(0, t)"0, w

1
(s*, t)"w

2
(s*, t), w@

1
(s*, t)"w@

2
(s*, t),

wA
1
(s*, t)"wA

2
(s*, t), w

2
(l, t)"w

3
(l, t), w@

2
(l, t)"w@

3
(l, t),

wA
2
(l, t)"wA

3
(l, t), wA

3
(L, t)"w@@@

3
(L, t)"0,

EIw@@@
2

(l, t)!EIw@@@
3

(l, t)#F
0

eiXt
"0. (23)

If harmonic solutions of the form

w
i
(x, t)"=

i
(x) eiXt (24)

are substituted into equation (22), the following ordinary di!erential equations are obtained
for the amplitude functions =

i
(x):

=IV
i

(x)!KM 4=
i
(x)"0 (i"1, 2, 3), (25)

where

KM 4"
mX2

EI
. (26)

The corresponding boundary and matching conditions now read as

=
1
(0)"=@

1
(0)"0, =

1
(s*)"=

2
(s*)"0, =@

1
(s*)"=@

2
(s*),

=A
1
(s*)"=A

2
(s*), =

2
(l)"=

3
(l), =@

2
(l)"=@

3
(l),

=A
2
(l)"=A

3
(l), =A

3
(¸)"=@@@

3
(¸)"0,

=@@@
2

(l)!=@@@
3

(l)#
F
0

EI
"0. (27)

The general solutions of the di!erential equations (25) are

=
1
(x)"c

1
sinKM x#c

2
cosKM x#c

3
sinh KM x#c

4
cosh KM x,

=
2
(x)"c

5
sinKM x#c

6
cosKM x#c

7
sinh KM x#c

8
cosh KM x,

=
3
(x)"c

9
sinKM x#c

10
cosKM x#c

11
sinh KM x#c

12
cosh KM x, (28)

where c
1
}c

12
are unknown integration constants to be determined. Substitution of

expressions (28) into conditions (27) yields, after rearrangement, the following set of 10
inhomogeneous equations for the determination of the coe$cients c

i
:

Ac"b. (29)



TABLE 1

Dimensionless vibration amplitudes at various sections of the beam due to the harmonic force F
0

eiXt at l/¸"1. X"5 JEI/m¸4 is chosen

g
0)1 0)2 0)3 0)4 0)5

0)1 0 0 0)030497 0)030734 !0)004108 !0)004113 !0)002091 !0)002092 !0)001380 !0)001380
0)2 !0)016266 !0)016230 0 0 !0)008214 !0)008213 !0)005572 !0)005574 !0)004136 !0)004138
0)3 !0)051199 !0)051222 !0)236753 !0)238491 0 0 !0)006264 !0)006264 !0)006197 !0)006198
0)4 !0)100962 !0)101143 !0)674390 !0)679561 0)030027 0)029987 0 0 !0)005501 !0)005503
0)5 !0)161851 !0)162253 !1)270533 !1)280610 0)080140 0)080055 0)016316 0)016311 0 0

XM 0)6 !0)230419 !0)231072 !1)984560 !2)000426 0)145886 0)145758 0)041542 0)041530 0)011747 0)011742
0)7 !0)303628 !0)304553 !2)779070 !2)801531 0)223021 0)222848 0)073522 0)073503 0)028814 0)028804
0)8 !0)379017 !0)380235 !3)621659 !3)651081 0)307669 0)307447 0)110206 0)110186 0)049712 0)049702
0)9 !0)454885 !0)456419 !4)486890 !4)523432 0)396514 0)396234 0)149730 0)149701 0)073027 0)073011
1)0 !0)530480 !0)532332 !5)358391 !5)402254 0)487013 0)486659 0)190506 0)190472 0)097468 0)097442

0)6 0)7 0)8 0)9

0)1 !0)000985 !0)000985 !0)000707 !0)000707 !0)000473 !0)000473 !0)000245 !0)000245
0)2 !0)003147 !0)003148 !0)002351 !0)002351 !0)001615 !0)001616 !0)000855 !0)000856
0)3 !0)005301 !0)005302 !0)004220 !0)004219 !0)003018 !0)003017 !0)001641 !0)001640
0)4 !0)006269 !0)006271 !0)003018 !0)005621 !0)004273 !0)004275 !0)002417 !0)002418
0)5 !0)004886 !0)004886 !0)005820 !0)005821 !0)004981 !0)004982 !0)003000 !0)003000

XM 0)6 0 0 !0)004174 !0)004174 !0)004754 !0)004756 !0)003216 !0)003215
0)7 0)009133 0)009130 0 0 !0)003216 !0)003219 !0)002894 !0)002895
0)8 0)021680 0)021679 0)007069 0)007070 0 0 !0)001873 !0)001871
0)9 0)036442 0)036435 0)016237 0)016233 0)005021 0)005015 0 0
1)0 0)052269 0)052256 0)026437 0)026429 0)011054 0)011040 0)002683 0)002678
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The expression of the (10]10) coe$cient matrix A is given in Appendix A. The vectors
c and b are de"ned as

cT"[c
1

c
2

c
5

c
6

c
7

c
8

c
9

c
10

c
11

c
12

],

bT"C0 0 0 0 0 0 0 !

F
0

EIKM 3
0 0D . (30)

Lengthy expressions of the elements of vector c, which were obtained using
MATHEMATICA via symbolic computation, are not given here due to space limitations.
However, it is important to note that the vector c and therefore the amplititude functions
=

1
(x),=

2
(x) and=

3
(x) in equations (28) contain the common factor F

0
/(EI/¸3) which has

the dimension of length. Having obtained=
i
(x) (i"1, 2, 3), it is possible to determine the

steady state amplitude at any point x of the beam, due to the harmonic force at a point
x"l .

3. NUMERICAL APPLICATIONS

This section is devoted to the numerical evaluations of the formulae established in the
preceding sections. As an example, l/¸"1 and X*"5 are chosen. This means that

a harmonically varying vertical force of the radian frequency 5 JEI/m¸4 is acting at the tip
of the beam, shown in Figure 1.

The displacements at various sections of the beam, non-dimensionalized by dividing by
F
0
/(EI/¸3) are given in Table 1. g represents the non-dimensional position of the support,

whereas xN "x/¸ denotes the non-dimensional position of the point, the displacement of
which we are interested in. The values in the "rst columns are values obtained from formula
(20), where n"15 is taken in the series expansion (4) and bM

1
}b1

15
in equation (21) taken from

reference [2] are correct up to 12 decimal places. The values in the second columns
are exact values obtained by the direct solution of the boundary value problem outlined in
section 2.2.

The agreement between the values in both columns justi"es expression (20), obtained on
the basis of a formula established for the receptance matrix of viscously damped discrete
systems subject to several constraint equations. It is worth noting that the agreement of the
numbers in both columns becomes excellent if many more decimal places are considered in
bM
i
values.

4. CONCLUSIONS

This note is concerned with the determination of the frequency response function of
a cantilevered beam, which is simply supported in-span. The frequency response function is
obtained through a formula, which was established for the receptance matrix of discrete
systems subjected to linear constraint equations. The comparison of the numerical results
obtained with those via a boundary value problem formulation justi"es the approach used
here.
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PPENDIX A

The matrix A in

A"

sin KM g¸!sin 0 0 0 0 0 0

0 sinh KM g¸ cosh KM g¸ 0 0 0 0

cosKM g¸!cos !coshKM g¸ !sinhKM g¸ 0 0 0 0

!(sin KM g¸#sin !sinh KM g¸ !cosh KM g¸ 0 0 0 0

0 sinhKM l coshKM l !sin KM l !cos KM l !sinhKM l !coshKM l

0 cosh KM l sinh KM l !cos KM l sin KM l !coshKM l !sinhKM l

0 sinhKM l coshKM l sin KM l cos KM l !sinhKM l !coshKM l

0 cosh KM l sinh KM l cos KM l !sin KM l !coshKM l !sinhKM l

0

0

0

0

0

0

!sinKM ¸

!cosKM ¸

!cosKM ¸

sin KM ¸

sinhKM ¸

cosh KM ¸

cosh KM ¸

sinhKM ¸

.
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A

equation (29) is

hKM g¸ cosKM g¸!cosh KM g¸ 0 0

0 sin KM g¸ cosKM g¸

hKM g¸ !(sin KM g¸#sinh KM g¸) !cosKM g¸ sin KM g¸

hKM g¸) !(cos KM g¸#cosh KM g¸) sin KM g¸ cosKM g¸

0 sin KM l cosKM l

0 cosKM l !sin KM l

0 !sin KM l !cosKM l

0 !cosKM l sin KM l

0

0

0

0

0

0
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